
Accessing and Visualizing Scientific Spatiotemporal Data

Daniel S. Katz
Jet Propulsion Laboratory

California Institute of Technology
Danie1.S. Katz@jpl.nasa.gov

G. I3ruce Berriman
NASA Infrared Processing and Analysis Center

gbb @?ipac.caltech.edu

Jim Collier
Jet Propulsion Laboratory

California Institute of Technology
James. C. Collier @jpl.nasa.gov

John Good
NASA Infrared Processing and Analysis Center

jcg @ipac.caltech.edu

Joseph C. Jacob
Jet Propulsion Laboratory

California Institute of Technology
Joseph. C.Jacob @jpl .nasa.gov

P. Peggy Li
Jet Propulsion Laboratory

California Institute of Technology
P.P.Li@jpl.nasa.gov

‘Tom Prince
Jet Propulsion Laboratory

California Institute of Technology
Thomus.A.Prince @jpl.nasa.gov

Attila Bergou
Jet Propulsion Laboratory

California Institute of Technology
attila@alumni.cmu.edu

Gary L. Block
Jet Propulsion Laboratory

California Institute of Technology
Gary .L.Block@jpl.nasa.gov

David W. Curkendall
Jet Propulsion Laboratory

California Institute of Technology
David. W.Curkendal1 @jpl.nasa.gov

Laura Husman
Jet Propulsion Laboratory

California Institute of Technology
Laura.Husman @jpl .nasa.gov

Anastasia Laity
NASA Infrared Processing and Analysis Center

laity @ipac.caltech.edu

Craig Miller
Jet Propulsion Laboratory

California Institute of Technology
Craig.D.Miller@jpl.nasa.gov

Herb Siege1
Jet Propulsion Laboratory

California Institute of Technology
Herbert.L,Siegel@jpl.nasa.gov

Roy Williams
California Institute of Technology

roy @ cacr.caltech.edu

mailto:Katz@jpl.nasa.gov
mailto:ipac.caltech.edu
mailto:jpl.nasa.gov
mailto:ipac.caltech.edu
http://nasa.gov
mailto:P.P.Li@jpl.nasa.gov
mailto:jpl.nasa.gov
mailto:attila@alumni.cmu.edu
mailto:L.Block@jpl.nasa.gov
mailto:jpl.nasa.gov
http://nasa.gov
mailto:ipac.caltech.edu
mailto:Craig.D.Miller@jpl.nasa.gov
mailto:Herbert.L,Siegel@jpl.nasa.gov
http://cacr.caltech.edu

Abstract

This paper discusse,y work done by JPL’s Parallel
Applications Technologies Group in helping scientists
access and visualize very large data sets through the use
of multiple computing resources, such as parallel
supercomputers, clusters, and grids. These tools do one
or more of the following tasks: visualize local data sets
for local users, visualize local data sets for remote users,
and access and visualize remote data sets. The tools are
used for various types o j data, including remotely sensed
image data, digital elevation models, astronomical
surveys, etc. The paper attempts to pull some common
elements out of these tools that may be useful for others
who have to work with similarly large data sets.

1. Introduction

The Jet Propulsion Laboratory (JPL) is run by the
California Institute of Technology for NASA, as the lead
NASA center for robotic space exploration. To date,
most of the data taken by JPL’s spacecraft, as well as
other NASA spacecraft, are sent to Earth for processing
and analysis. As the spaceborne instruments improve,
more and more data is taken and then returned to Earth.

Many common data sets are now each 5-10 TB, and
the number of data sets is also increasing. Desktop tools
often have difficulty working with data sets of this size.
Simply storing the data and accessing it is difficult.
Gaining knowledge from data is still hard, but one very
effective method is to visualize the data.

This paper discusses work done by JPL’s Parallel
Applications Technologies (PAT) Group. The PAT
Group’s goal is to help JPL and Caltech scientists deal
with large data sets. The remainder of this paper will
discuss a number of tools that the PAT group has
developed, for a few particular situations. The first is
working with local data sets that the scientists themselves
have generated. The second is providing access and
information from data developed by the scientist to others
located elsewhere. Finally, the third is accessing and
working with data developed by other scientists.

2. Working with local data

Supercomputing is often defined by comparison with
desktop systems, where the exact definition frequently
changes. One example is computing that is 2 orders of
magnitude more powerful than that available on a
desktop. When data is generated on a supercomputer, it is
often similarly larger in size than data that could be
generated on a desktop. Not coincidentally, data sets of
this size are also difficult to deal with in a desktop system.

Figure 1. Synthetically-enhanced Martian terrain. (30 m
resolution Vikino imaae enhanced to 2 cm resolution.\

1 common method for working with such data sets is to
eave them on the supercomputer on which they were
leveloped, and to return just the visual data to the user’s

desktop.
An example data set as shown in figure 1 is

synthetically-enhanced Martian terrain data. JPL has
collected coarsely-sampled elevation data of over the
surface of Mars. When planning future missions,
algorithms such as entry, descent, and landing (EDL) and
surface navigation must be tested against simulated
terrain. The PAT group has developed a terrain server to
supply users with such terrain. We have parallelized an
application previously developed at JPL, [13 and created a
system that allows users to launch jobs and return terrain
data generated either by that job or previous jobs. The
overall system is called TEDS, the Terrain and
Environmental Data Server.

2.1. Digital Light Table

Two types of data are often used to represent terrain
for a particular geographic area: a digital elevation model
(DEM) that gives a height value (z) for each location
value (x,y), and image data that includes one or more
values for each pixel. When the pixels are mapped to
location values, the two datasets are used together as a
terrain model. One tool that has been developed to
visualize terrain models is the Digital Light Table (DLT).

For multiple dirpbyr. each graph81c engino selocts the
t i l a and ~ e r f o m n the rendenno for its disolw:

Fiaure 2. Diaital Liaht Table (DLT) Architecture I
The DLT was originally built to allow scientists to

explore a SAR (synthetic aperture radar) mosaic of the
Amazon basin [2] . This goal led to a number of
requirements, including the ability to pan and zoom
through the data in real time, along with the ability to
scale to large input sizes, over 20 billion pixels, and to
scale to large output sizes, over 7 million pixels.

Multiple graphics engines are used to permit
scalability of output image sizes, and to assure that the
pan and zoom operations operate in real time. Figure 2
shows the architecture of the DLT. The left image shows
the input data set broken up into tiles. The middle column
shows the graphics engines, and the right image shows the
output images (arranged as a single image.) A user
interacts with any one graphic engine, which transfers any
inputs to all the other graphic engines, using a message
passing approach. Other than this, each graphic engine
operates independently. Each selects the tiles needed to
build its portion of the output image, reads the tiles, and
builds the output image:. Since the DLT is meant to
display terrain data, we must tile the DEM files similarly
to the image files. This permits fast panning. When the
DLT was built, the only graphics engine fast enough was
the Silicon Graphics (SGI) Reality Engine, and thus, the
DLT was run on SGIs with multiple graphics pipes.

The use of multiple graphic engines also permits
other forms of collaboration. Since one graphic engine
can drive one display, we can physically separate the sets
of engines and displays. Specifically, we can use the
graphics engine and the display in a workstation as one of
these units. In other words, scientists in multiple offices
can easily work with a single data set. When one takes
control and changes, the view, the views on all the others
change identically.

As mentioned, the input image is divided into tiles.
For each set of four tiles, a single tile is created with the
same number of pixels and half the resolution as one of
that set. This process of creating new levels of tiles is
continued until a level is obtained where only one tile
exists. This scheme, sometimes called an image pyramid
[3], adds about 1/3 disk storage overhead, but permits fast

zooming by the graphics hardware because the graphics
engines can choose the right level at which to operate,
limiting the amount of interpolation needed. The DEM
files are pyramided similarly to the image files, for the
same reason.

The original data for which the DTL was written
included multiple polarizations, and data take in two
seasons (wet and dry, about 6 months apart.) For this
reason, the DLT permits any band of data to be mapped to
any of the three colors (red, green, blue). This allows, for
example, for the changes between the two seasons to be
clearly viewed while panning and zooming. One can also
map bands to each color then flash between the sets as an
additional method for visual change detection. Finally,
the DLT can also overlay vector data on images.

Recently, a variant of the DLT called the Multi-
Surface Light Table (MSLT) has been developed. The
MSLT was designed to be used in visualization of data
from earthquake simulations. The main modifications
from the DLT are the use of both commodity PCs and
OpenGL’s texture blending capability, which give the
MSLT the ability to display multiple surfaces by variable
opacity, and linking of image data and metadata.

Figure 3 shows a sample image from the MSLT. One
can see terrain, and below the terrain, additional planes.
The planes represent fault segments. In this particular
image, the color of the segments represents the stress on
that segment. Yellow is low stress, and dark blue is high
stress. Also shown on the fault segments are arrows that
are used to indicate movement along a fault. An
additional feature, not shown in the figure 3, is that the
user can bring up another window that contains metadata
about each of the fault segments. The user can click on
one or more fault segments, and they will be highlighted
in the image, or the user can select one or more fault
segments in the image, and they will be highlighted in the
text window.

Figure 3. A sample MSLT image

2.2. FUVA

The Remote Interactive Visualization and Analysis
System (RIVA) [4, 51 is another tool that can visualize
terrain data, but unlike the DLT/MSLT, it is designed
with the underlying geometric model of a sphere, and thus
can accommodate global (planetary) datasets.

2.2.1. RIVA Architecture. Figure 4 shows the RIVA
system architecture. Around the core renderer, RIVA is
equipped with a suite of Graphic User Interface (GUI)
programs for data navigation, display and animation
editing. The main RIVA data navigator program, Flexible
Flyer, resides on an SGI workstation. A low-resolution
copy of the dataset is loaded into the Flexible Flyer,
where the user can navigate the dataset and select the
desired views. As the user navigates, hisher viewpoint is
transmitted to the whole earth renderer residing on a
remote supercomputer via a network interface program,
NetHost. The renderer renders the image using a full
resolution copy of the dataset and sends the resulting
image back to a display window, receive-display, on the
user's workstation.

RIVA is designed for both interactive exploration of
large datasets and batch generation of animations. The
Flexible Flyer has a key frame editor built in where key
frames can be inserted, appended, modified, and
previewed. A separate 2-D map display window, xshow,
displays the key frames or the flight path on a 2D map of
the data. It helps a user to identify his location and
direction in a global orientation and also help a user to
select key kames. Once the key frames are selected, the
flight path is calculated using a cubic spline algorithm.
The renderer then renders the flight path in the batch
mode and saves the animation fi-ames into disk.

The middle section of Figure 4 is the network
interface programs for RIVA. NetHost is the interface

FUVA Architecture
SGl Ongn 2ow

Whole Earth
Renderer

Fiaure 4. The RIVA svstem architecture.

(or, host) program between the GUI and the renderer.
RIVA uses a text-based command language to
communicate with the renderer. NetHost processes and
dispatches commands, and receives and distributes
results. The commands may come from a network
interface, such as a socket stream fed by the GUI
program, or from a disk file. The Router is a routing
daemon that facilitates dynamic, reliable, multi-cast
message passing services. It detaches the physical
connection between the renderer and the GUI program,
thus allowing either part of the program to run as a stand-
alone entity, a renderer to feed multiple displays on
different workstations, or even one GUI program to
control two parallel renderers.

2.2.2. Parallel Algorithm. Rather than using geometric
objects (such as triangular strips) to represent the digital
terrain as all the hardware-based terrain renderers do,
RIVA represents and renders the terrain pixel by pixel. It
uses a parallel forward projection rendering algorithm
with both object space decomposition and image space
decomposition. The input data, both image and elevation,
in either cylindrical projection or sinusoidal projection,
are equally divided into small tiles and distributed to each
rendering processor. Those processors apply the
transformation matrix to their local data and transform
them into image space coordinates. 'Each rendering
processor produces patches of images scattered in the
final image. The image patches are then merged and
composited into the final image using a binary-swap
method. The image tiles can be rendered in any order and
there is no communication required in the transformation
stage. The rendering processors synchronize globally
before the final compositing begins. The rendering speed
is thus determined by the slowest processor in the
transformation stage.

RIVA is careful in storing and accessing data in order
to render as efficiently as possible. RIVA stores its data
sets in data pyramids, similar to that of the DLT/MSLT,
but it generates the data pyramids on-the-fly to save
memory at the cost of some computation overhead. RIVA
also uses two culling techniques to eliminate input tiles
that fall outside the field of view of a given viewpoint.
Horizon Test calculates the distance from the viewpoint to
the center of each tile and eliminates the tiles that fall
behind the horizon. This test can eliminate almost half of
the tiles in a global dataset. Tile Test eliminates the tiles
whose projected areas fall outside the viewport.

(8) P)
Figure 5. Multiple surfaces composited by blending: (a) 30-meter LandSat, (b) two surfaces blended with the 2.25-meter
dataset at ooacitv=O 58 (d 2.25-meter aravscale dataset.

2.2.3. RIVA Features. There are several unique resolution (a). Setting the opacity of the top surface to
features that distinguish RIVA from other terrain
renderers. The first is multiple data representation.
Internally, RIVA represents the data using a spherical
model regardless of whether it is a global dataset or a
regular gridded dataset. Externally, RIVA can process
data in either 2D Cartesian, 3D Cartesian, or 3D Polar
coordinates. The dataset can be stored in either
Sinusoidal projection to save space or in Cylindrical
projection for efficient processing. RIVA is flexible and
tries to accommodate different application needs and
different data representations.

The second feature is Multiple Surface Rendering.
RIVA can render multiple terrain surfaces with different
resolutions, different data formats, and different
coverages, somewhat similarly to the MSLT. RIVA’s
multiple surfaces can be combined using various blending
methods. Figure 5 is an example of alpha-blending of
two surfaces. The top surface is a grayscale image of
Coronado Island at 2.2s-meter resolution (c) and the
bottom surface is a color LandSat image at 30-meter

I Figure 6. Multiple ocean surfaces composited by zbuffer. I

- -
0.58 produces a colored image at 2.25-meter resolution
(b). Figure 6 is an example of zbuffer compositing. The
top surface is a North Atlantic Ocean surface with color
representing ocean surface temperature. The bottom
surface is a topographic map of the ocean bottom. The
top surface is raised up so that the two surfaces can be
separated.

The third RIVA feature is Large Dataset Rendering.
RIVA allows out-of-core rendering for datasets that
exceed the capacity of the physical memory. A lower
resolution sample of the original dataset has to be
prepared in advance. RIVA loads the lower resolution
dataset and renders it until the data pyramiding algorithm
identifies that a higher resolution image tile is needed.
The full resolution image tile will then be loaded into
memory. A memory cache is used to keep the most
recent tiles used to reduce disk I/O. FUVA also renders
time-varying datasets generated by simulations. Similar
to out-of-core rendering, only the data for the first time
step reside in the memory. The remaining data will be
loaded into memory when the animation starts.

The last RIVA feature is High Resolution Animation.
RIVA is not only scalable to large input datasets but also
scalable to large image outputs. R N A images are not
limited to the framebuffer size or the screen resolution as
with other terrain renderers. RIVA can render a large
image in multiple passes by partitioning the images into
multiple viewports. Theoretically, there is no limit to the
image size in RIVA.

3. Sharing Data Visually

A common problem at NASA is that of having a
collection of data that has been taken and possibly
manipulated in some way, which is intended to be shared
with others. At one time, the method for distributing such
data was to put it on a tape and mail it to the end user.
For small amounts of data, this has now generally been
replaced by providing ftp or web access. However, for

large data sets, sending files on a tape has often been
replaced only by sending them on CDs or DVDs. Our
intent is to use the Internet for both small and large files,
and specifically, to allow users to obtain just the data they
desire. We can do this because we can take advantage of
both falling disk prices to put all the data on disk for fast
access, and we can use parallel computing that’s hidden
from the user to provide particular data products derived
from the data on disk.

MapUS is an example of a project that demonstrates
this idea. MapUS is a Landsat mosaic of the continental
United States. This 6-band, 150-GB (compressed),
215,000 by 95,000 pixels image with 1-arc-second
resolution was built from 428 individual Landsat patches
of the Multi-Resolution Land Characteristics (MRLC)
dataset, using custom-designed software based on SGI
Imagevision framework and run on JPL supercomputers
to accomplish this task as a single step operation, with
minimal operator input. As has been discussed previously
in this paper, we store the mosaic in a tiled, pyramided
format. However, the tiles are not stored as separate files,
but rather, a new, custom file-format was developed. [6]

We used SGI’s Imagevision (IV) Library as a
framework for both building the mosaic and building
custom images from the mosaic. It supports a large
selection of image file formats, but none of the existing
ones provided all the features we needed to build and
store the mosiac. Since it is easily extendible, a custom
file format was designed and implemented. The DLT
pyramided data format was used as the starting point, as it
provides hierarchical, multispectral and paged image
storage, This format was also greatly enhanced to supply
additional features. The DLT format specified the order of
the pages within the file, the offset at which each page is
stored being uniquely determined by a linear combination
of resolution level, page corner position within the whole
image and spectral channel.

To make this format more flexible, one level of
indirection between the page file offset and the page
location within the image was introduced. This was done
by the introduction of a separate index file, containing a
small record for every page. This record specifies the
storage size of the page and the offset of the page within
the data file. The order of records in the index file is
predetermined, the same iEi the page order in the original
image file format. This addition makes possible per-page
compression since the size of a page is now flexible, and
also adds efficient sparse image storage. We support both
JPEG and LZW image compression since both are readily

available and are used extensively. In addition to
straightforward versions of these, a few custom variations
were attempted, but they are still in the early development
phase.

Another useful feature of this image file format is the
fact that the image file is consistent as soon as an empty
data file and a zero filled index file is created. A record
containing a size of zero specifies that the whole page is
black, and no additional storage space is required. A
newly created file, with a zero size data file and an index
file filled with zeros is thus a perfectly valid black image.
As pages are written or modified, they are added at the
end of the file, and the record in the index file is
populated. Thus, the output file can be opened for
inspection while it is being created, allowing early
detection of potential problems and an easy visual
inspection of the generated images. Using this format, the
image may be modified by simply appending the new
pages of image data to the data file and modifying the
corresponding records in the index file. If a copy of the
previous index file is made and preserved, simple access
to both versions of the file is possible at a minimal storage
cost.

MapUS is actually two servers. One is a standard
web server that is also a client to the second server. The
second uses a standard called the Web Map Service [7] to
accept requests from a client (the web server) and deliver
the image data back, ultimately to the user. By building
this as two servers, we can satisfy two sets of customers:
users who want to look at the data through our web
server, and users who want to build products based on our
data just using our WMS server. Our web server
performs the actual image generation using the IV library
to take advantage of the parallelism available on our SGI
computers. While this allows us to return most results in a
few seconds, it limits image generation to the IRIX
platform. To ensure portability, the image generation is
confined to a separate binary that is executed as a
subprocess. Unfortunately, this adds significant overhead
as the image must be encoded and then decoded for each
pipe between the processes. To overcome this, there is a
compile-time option which will include the image
generation code in the server, allowing much more
efficient operation by avoiding unnecessary image
encoding, piping, and decoding. When this option is
disabled, the server does not rely on the Imagevision
library, which preserves portability, but if the
Imagevision library is available, significant speed gains
can be realized [SI.

Figure 7. Portion of OnEarth mosaic, showing the
confluence of the Illinois and Mississippi Rivers at 112-
arc-asecond resolution.

We are also now near the end of development of a
new server that will serve a mosaic of the land surface of
the Earth at 1/2-arc-second resolution. Figure 7 shows a
portion of this mosaic. The mosaic will be about 20 times
larger than the MapUS mosaic. Past experience with
storage systems together with budget as a consideration
led to the selection of a Linux storage cluster. Other
projects with similar storage requirements joined the
development, with the result being a ten-system Linux
storage cluster offering 40TB of storage space. The
system, named Raid Again Storage using Commodity
Hardware And Linux (RASCHAL), has been operational
since April 2003. Each unit is built around a rack-
mountable PC case containing one Intel XEON 2.4GHz
CPU hosting two separate 3-ware IDE RAID controllers,
each controller being configured as a 7+1 RAID 5 disk.
The IDE drives used are Maxtor 250GB drives, selected
for maximum capacity and minimal power requirements.
At the next level, two virtual drives residing in the same
case are striped together using the Linux metadrive
facility, thus the RAID again name. Dual Gigabit ethernet
is standard on every R.4SHCAL unit, and a 24 port
Gigabit Ethernet router provides the communication
matrix to the client systems. To make the whole system
simpler to maintain, the storage units are configured to
boot from a remote host machine.

The OnEarth WMS mosaic project is the first user of
this storage system, having, to date, restored more than
7000 of the original Landsat 7 scenes, and produced a few
continent size mosaics. This storage system is being used
for the mosaic building project and for hosting the data
for the WMS site [9].

4. Accessing and Visualizing Remote Data

Another general problem is working with data stored
in remote archives. Typical problems are understanding
what data exists in the archive, what data exists in which
file in the archive, and how these files are accessed.
Another problem is building visualizations from this
remote data. The PAT group has worked on a number of
projects related to these problems, but in this paper, we
will focus on astronomy applications. In these projects,
we attempt to hide the complexity of accessing data from
remote archives and building custom visualizations
behind a simple interface, which is again that of a web
browser.

4.1 The yoursky server

The only client software required to use the yoursky
custom astronomical image mosaic server is the
ubiquitous web browser. By filling out and submitting
the form at http://yourSky.jpl.nasa.gov/, users have
custom access on their desktops to all the publicly
released data from the member surveys. In this context,
“custom access” refers to new technology that enables on-
the-fly astronomical image mosiacking to meet user-
specified criteria for: region of the sky to be mosaicked,
data set to be used, resolution, coordinate system,
projection, data type, and image format [lo, 111. All
mosaic requests are fulfilled from the original archive
data so that the domain experts maintain control and
responsibility for their data and data corruption due to
resampling is minimized because only one reprojection is
done from the raw input data to the end product.
Currently, the data archives that are accessible with
yoursky are the Digitized Palomar Observatory Sky
Survey (DPOSS) [12] and the Two Micron All Sky
Survey (2MASS) [14]. DPOSS has captured the entire
northern sky at 1 arc second resolution in three visible
wavelengths. 2MASS has captured the entire sky at 1 arc
second resolution in three infrared wavelengths. The
yoursky architecture supports expansion to include other
surveys, without regard to the native image partitioning
scheme used by a particular survey.

The architecture for yoursky is illustrated in Figure
8. In the figure, the numbered descriptions on some of the
arrows give the steps take to fulfill a typical mosaic
request. The procedure is:

The clients at the top left of the illustration are
the web browsers that may be used to submit
requests to yoursky, through use of a simple
HTML form interface.
The yourSky Mosaic Request Manager polls for
mosaic requests in the request queue and hands
them off to the Mosaic Request Handler, using a
user-priority scheme where the priority is

1.

2.

http://yourSky.jpl.nasa.gov

1. Rcmnc dw fmm

Figure 8. The architecture of yoursky.

3.

4.

5 .

6 .

7.

8.

inversely related to the number of pixels
generated for the user in the last 24 hours.
The Mosaic Request Handler queries the Plate
Coverage Database (containing metadata
describing the extent of the sky covered by the
files in the raw input data) to determine which
input image plates from DPOSS or 2MASS are
required to fulfill the mosaic request.
A fixed-size data cache is maintained on the
yoursky server containing copies of recently-
used input files is checked for the needed files.
If all the files exist in the cache, the parallel
mosiacking code is started to build the desired
mosaic. If all the files are not in the cache, an
archive request is inserted in the request queue.
The Archive Request Manager polls for archive
requests and hands them off to the Archive
Request Handler..
The Archive Request Handler retrieves the
images for the archives, using the correct clients
for each archive. When all the files have been
retrieved, the parallel mosiacking code is started.
When the mosaic is completed, an email is sent
to the user with a URL that can be used to access
the mosaic.

This process is fairly general. To add new sources of
data, two changes need to be made. First, the plate
database must be updated with the extents of the plates in
the new data source. Second, the mechanism to access
the data from the archives must be implemented within
the Archive Request Handler. yoursky is one of a
number of applications designed to provide access to
these data sources. All of these applications need to do
these two things. Fortunately, the astronomy and
computer science communities, working together as the
US National Virtual Observatory (NVO), are converging
on standard methods for them called Conesearch and
SIAP (simple image access protocol), respectively [151.

Another issue with yourSky is user authentication
and accounting. This is something that could be handled
within the parallel mosiacking code. This code is
currently run on dedicated resources so that the authors of
yourSky are really responsible for all yourSky usage.
This model is probably appropriate for small mosiacking
jobs, in the same way that users of web services are not
charged for their use of a web server. However, for large
mosaics, it is desirable to be able to tie the processing to a
unique user. The Grid community is studying this issue,
and some answers are starting to appear. A version of
yoursky that is Grid-enabled has been developed, called
yourSkyG [16].

4.2 Montage

One issue with the current version of yourSky is that,
while it operates quickly and thus is good for generating
“browse” images, it does not preserve the calibration and
astrometric fidelity of the data. Another project,
Montage, builds on yoursky through the following
improvements:

9

Improved performance throughput
Interoperability with grid infrastructure
Compliance with NVO architecture

Montage’s architecture is shown in Figure 9.
Montage consists of two independent but interoperable
components: a background rectification engine,
responsible for matching background radiation across
images, and a coadditiodreprojection engine, responsible
for computing the mosaic. Montage will support all
reprojections defined in the World Coordinate System
(WCS) [18].

The Montage processing paradigm consists of three
main parts: reprojection of images to a common
scale/coordinate system; background adjustment of
images to a common flux scale and background level; and
coaddition of reprojectedlbackground-corrected images
into a final mosaic. The background adjustment process
involves fitting the differences between overlapping
images on a local (for small mosaics) or global scale and
determining the parameters for smooth surfaces to be
subtracted from each image to bring them to the common
scale. These parameters can either be determined on the
fly or done once and saved in a database for any future
mosaics done with the same images. The advantage of the
former is that it allows variations in the fitting algorithms
to deal with the special cases and, for small regions, will
probably be more sensitive to local variations than a
global fit. The advantage of the latter is that it provides a
uniform view of the sky and a tested “best fit” that can be

Preservation of scientific fidelity in the mosaics
Support for the “Drizzle” algorithm [171
Application of physically based background
subtraction models

I /MONTAGE Reprojection and Coaddition

I

t

certified as such by the data provider. We plan to use both
approaches, deriving and storing in a relational DBMS at
least one set of background fit parameters for the f i l l sky
for each image collection, but allowing the user the option
to invoke custom background processing if they think it
will provide a better mosaic for a local region.

The image reprojection within Montage takes up
nearly all the run time. This step however, is inherently
parallelizable, and can be run on however many
processors are available to it. When deployed in 2005,
the final version of Montage is required to sustain a
throughput of at least 30 square degrees (e.g. thirty 1
degree x 1 degree mosaics, one 5.4 degrees x 5.4 degrees
mosaic, etc.) per minute on a 1024 x 400 MHz R12K
Processor Origin 3000 or machine equivalent. Currently,
Montage has been released as a single processor
application, built as a set of executables [19]. The time to
run this code on our test system, a PC with a 1.4-Ghz
IA32-processor running l h u x is about 100 seconds per
512x1024 pixel 2MASS image.

We have also demonstrated two prototypes of a
parallel Montage. In one case, we scripted the process
and data flow, assuming that all processors share a file
system. This prototype, called Atlasmaker [20], obtained
a speedup of approximately 60 on 64 nodes. The second
prototype I211 is more general. It relies on a Montage-

specific web server that builds an abstract DAG (directed
acyclic graph, a definition of the data and processing
dependencies), a general grid software package called
Pegasus that builds a concrete DAG (a DAG that is tied to
specific computational resources) from the abstract DAG,
and another program called Condor DAGman [22] that
then runs the concrete DAG on a collection of grid
computers. This prototype is, however, currently much
slower and only permits a small speedup.

All three versions of Montage share the use of NVO
services to determine which input images need to be used
and to access those images. The second prototype can
save intermediate files as well as output files using a
replica location service (RLS, a Globus component [23])
to allow future mosaics to either be simply retrieved or
built more quickly.

5. Conclusions

This paper has described a number of existing tools
developed by the PAT group to make sense of large
amounts of data: Digital Light Table (DLT), MSLT,
RIVA, MAPUS, OnEarth, yoursky, and Montage. These
tools all were developed in collaboration with scientists.
They combine three ideas in three areas: visualizing a
scientist’s data; allowing others to view images generated
from a scientist’s data; and accessing and visualizing
remote data. Many of these applications try to hide the
complexities of accessing remote data from archives and
running jobs on supercomputers from the users. These
applications have given us a set of tools that we or others
can use for new applications.

6. Acknowledgments

Most of the work discussed in this paper has been
carried out at the Jet Propulsion Laboratory, California
Institute of Technology with funding from NASA and the
U.S. Air Force. NASA sponsors include the Earth
Science Technology Office’s (ESTO’s) Computational
Technologies (CT) project, the Digital Earth project, and
the Geospatial Interoperability Office. The Montage
project has been jointly carried out with NASA’s Infrared
Processing and Analysis Center (IPAC), located at
Caltech.

7. References

[l] R. W. Gaskell, L. E. Husman, J. B. Collier, and R. L. Chen;
“Synthetic Environments for Simulated Missions,” Proceedings
of the IEEE Aerospace Conference, 200 1,

[2] P. Siqueira, S. Hensley, S. Shaffer, L. Hess, G. McGarragh,
B. Chapman, and A. Freeman, “A Continental Scale Mosaic of

the Amazon Basin Using JERS-1 SAR,” IEEE Trans. GeoSci.
Rem. Sens., v. 38(6), pp. 2638-2644,2000.

[3] L. Williams, “Pyramidal Parametrics,” Compufer Graphics,
V. 17(3), pp. 1-1 1, 1983.

[4] P. P. Li, W. H. Duquette, and D. W. Curkendall, “RIVA: A
Versatile Parallel Rendering System for Interactive Scientific
Visualization,” IEEE Transactions on Visualization and
Computer Graphics, v. 2(3), pp. 186-201, 1996.

[5] P. P. Li, “Supercomputing Visualization for Earth Science
Datasets”, Proceedings of the NASA Earth Science Technology
OfJice (ESTO) Annual Conference, 2002.

[6] L. Plesea and J. Jacob, “Building Large Scale Mosaics From
Landsat Data,” Proceedings of the 8th ACM Symposium on
Advances in Geographic information Systems, 2000.

[7] J. de La Beaujardiere, “Web Map Service Implementation
Spec i f i cat io n, ” 2 0 0 2
(http://www.opengis.org/).

[8] R. Schreyer and L. Plesea, “OnEarth: Design and
Implementation of a Web Map Server,” SURF project final
report, Caltech, Sept. 2003.

[9] G. Percival and L. Plesea, “Web Map Services (WMS)
Global Mosaic,” Proceedings of the 3rd International Syposium
on Digital Earth: Information Resources f o r Global
Sustainability, 2003.

[lo] J. C. Jacob, R. J. Brunner, D. Curkendall, S. G. Djorgovski,
J. C. Good, L. Husman, G. Kremenek, and A. Mahabal,
“yourSky: Rapid Desktop Access to Custom Astronomical
Image Mosaics,” Proceedings of SPIE Astronomical Telescopes
and Instrumentation: Virtual Observatories Conference, 2002.

[l l] The yoursky Custom Mosaic Server,
http://yourSky j pl.nasa.gov/.

[12] S. G. Djorgovski, R. R. Gal, S. C. Odewahn, R. R. de
Carvalho, R. Brunner, G. Longo, and R. Scaramella, “The
Palomar Digital Sky Survey (DPOSS),“ To appear in: Wide
Field Surveys in Cosmology, eds. S. Colombi and Y. Mellier.

0 pen G I S Cons o r t i u m I nc . ,

[I41 S. G. Kleinmann, “2MASS - The 2 Micron All Sky
Survey,” Robotic Telescopes in the 1990s, (ASP Conf Ser.),
203, 1992.

[151 National Virtual Observatory Standards, 2002
(http://www.us-vo.org/standards.html /)

[16] J. C. Jacob, J. B. Collier, L. G. Craymer, and D. W.
Curkendall, “yourSkyG: Large-Scale Astronomical Image
Mosaicking on the Information Power Grid,” submitted to
Parallel and Distributed Computing Practices (PDCP), Special
Issue on Grid Computing Infrastructure and Applications,
October 2003.

[I71 A.S. Fruchter, and R.N. Hook. “Linear Reconstruction of
t h e H u b b l e D e e p F i e 1 d , ”
http://www.stsci.edu/-fruchter/dither/drizzle. html

[18] E.W. Greisen and M. Calabretta, “Representation of
C e l e s t i a l C o o r d i n a t e s I n F I T S , ”
http://www.atnf.csiro.au/people/mcalabre/WCS.htm.

[191 Montage web site: http://montage.ipac.caltech.edu/.

[20] R. Williams, L. Brieger, M. Feldman, J. Jacob, G.
Kremenek, and R. Moore, “Atlasmaker: Grid-enabled
Multiwavelength Imaging,” Proceedings of Astronomical Data
Analysis Software & Systems, 2003.

[21] G. Singh and E. Deelman, “Montage on the Grid,” US
Vi r tua l Obse rva to ry Techn ica l Repor t ,
http://bill.cacr.caltech.edu/cfdocs/usvo-pubs/list.cfm

[22] D. Thain, T. Tannenbaum, and M. Livny, “Condor and the
Grid,” Grid Computing: Making The Global Infrastructure a
Reality, (F. Berman, A. J. G. Hey, G. Fox, editors,) John Wiley,
2003.

[23] A. Chervenak, et. al., “Giggle: A Framework for
Constructing Scalable Replica Location Services,” Proceedings
of the SC2002 Conference, 2002.

http://www.opengis.org
http://yourSky
http://pl.nasa.gov
http://www.us-vo.org/standards.html
http://www.stsci.edu/-fruchter/dither/drizzle
http://www.atnf.csiro.au/people/mcalabre/WCS.htm
http://montage.ipac.caltech.edu
http://bill.cacr.caltech.edu/cfdocs/usvo-pubs/list.cfm

